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SUMMARY 

In this paper, we present a reassessment of the sampling properties of the metric matrix distance geometry 
algorithm, which is in wide-spread use in the determination of three-dimensional structures from nuclear 
magnetic resonance (NMR) data. To this end, we compare the conformational space sampled by structures 
generated with a variety of  metric matrix distance geometry protocols. As test systems we use an uncon- 
strained polypeptide, and a small protein (rabbit neutrophil defensin peptide 5) for which only few tertiary 
distances had been derived from the N M R  data, allowing several possible folds of the polypeptide chain. A 
process called 'metrization' in the preparation of a trial distance matrix has a very large effect on the 
sampling properties of the algorithm. It is shown that, depending on the metrization protocol used, metric 
matrix distance geometry can have very good sampling properties'indeed, both for the unconstrained model 
system and the NMR-structure case. We show that the sampling properties are to a great degree determined 
by the way in which the first few distances are chosen within their bounds. Further, we present a new proto- 
col ( 'partial metrization') that is computationally more efficient but has the same excellent sampling proper- 
ties. This novel protocol has been implemented in an expanded new release of the program X-PLOR with 
distance geometry capabilities. 

INTRODUCTION 

In multidimensional nuclear magnetic resonance (NMR) spectroscopy of biological macromol- 
ecules in solution (Ernst et al., 1986; Wiithrich, 1986; CIore and Gronenborn, 1991), the number 
of independent distance and dihedral angle constraints that can be obtained from NOE and J- 
coupling experiments is usually less than the molecule's degrees of freedom. Therefore, the con- 
formational sampling of the method used to determine structures consistent with those 
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constraints is of great practical importance. In fact, the spread of a family of independently-deter- 
mined structures is often used to estimate the precision of NMR-derived structures (for example, 
Havel and Wtithrich, 1984). The fact that the sampling properties of the metric matrix distance 
geometry algorithm are not always optimal, especially in the case of extended polypeptides, has 
been of some concern for a while (Brfinger et al., 1987; Nilges et al., 1988; Thomason and Kuntz, 
1989). q'he poor sampling has been shown to be of particular significance in the determination of 
the structure of rabbit neutrophil defensin peptide 5 (NP-5), a system with few interproton 
distance NOE constraints (Pardi et al., 1988). Levy et al. (1989) used a Monte Carlo search in 
torsion angle space to find several NP-5 folding topologies of reasonable conformational energies 
which were consistent with the observed NOEs, while they obtained only a single fold with a 
distance geometry program. 

A number of distance geometry programs are commonly used, among them DISGEO (Havel 
and Wiithrich, 1984), DSPACE (D. Hare and R. Morrison, unpublished data; Hare and Reid, 
1986), and the UCSF program (Kuntz et al., 1979). Although based on the same theory, the three 
programs exhibit different sampling properties depending on what options are used. Using uncon- 
strained polypeptides as model systems, Metzler et al. (I 989) reported overly-extended conforma- 
tions which are very similar to each other, as measured by their mean backbone root-mean-square 
differences (RMSDs) and end-to-end distances, calculated with the program DSPACE. Attempts 
to reproduce their results with the program DISGEO failed (Niiges, unpublished results). First, 
the calculated structures after embedding were much better in terms of their geometry than those 
reported by Metzler et al. (1989). Second, the nonuniform random number distribution that the 
standard version of DISGEO used to choose distances within their bounds had the curious effect 
that the unconstrained polypeptides typically had a helical shape; the radius and pitch of this helix 
did not vary greatly between structures. On the other hand, with a uniform random number distri- 
bution, the generated structures sampled the conformational space much better than Metzler et 
al. (1989) reported. The reason for this improved sampling of DISGEO is a process called metri- 
zation (Havel and Wiithrich, 1984) to obtain a trial distance matrix which is consistent at the 
triangle inequality level. However, since the commonly used 4-stage protocol for structure calcu- 
lations with DISGEO includes a substructure generation stage which cannot employ metrization, 
the full effect of this improved sampling was generally not seen by researchers applying the 
program to NMR structure determination (in the model calculations mentioned above, the sub- 
structure stage was bypassed). 

Havel (1990) compared the sampling of metric matrix distance geometry with metrization to 
that of the ellipsoid algorithm (Billeter et al., 1986) and x~ariable target function searches in 
torsion angle space (Braun and G6, 1985) for uncons~'ained polypeptides. He found that the me- 
trization procedure used in DISGEO introduced a new sampling problem, since unconstrained 
polymer structures were significantly more compact than polymer theory predicted. Havel (1990) 
solved the problem by randomizing the sequence in" which distances are chosen within their 
.bounds, and by using a uniform random number distribution to choose distances within their 

Abbreviations: RMSD, root-mean-square difference; SA, simulated annealing; NMR, nuclear magnetic resonance; NOE, 
nuclear Overhauser effect; NOESY, nuclear Overhauser effect spectroscopy; DG, distance geometry; NP-5, rabbit neutro- 
phil defensin peptide 5. 
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bounds. Unconstrained alanine polymer structures calculated with this new 'random metrization' 
protocol appear to sample their available conformational space very well. 

A question that is of great importance to the experimental NMR spectroscopist remains as yet 
to be.explored, namely, how does metrization affect the quality and sampling of NMR-derived 
structures, rather than unconstrained model systems. In this work we therefore used the small 
protein rabbit neutrophil defensin peptide (NP-5) with NMR-derived interproton distance data 
(Pardi et al., 1988) as a test case. The conformation of NP-5 appears to be under-determined by 
the NMR data allowing several quite distinct structures. An ideal structure determination 
program should thus determine all possible structures which are compatible with the NMR data. 

In addition, we address a drawback of using metrization, namely, that it is computationally 
more expensive than the more 'traditional' distance geometry approaches without metrization. In 
order to reduce these computational requirements, we made use of the following observation: the 
complete set of all possible interatom distances is redundant. Knowing the distances from each of 
four selected atoms to all other atoms in the molecule is, at least in principle, sufficient to deter- 
mine the entire molecule's conformation in three dimensions (Schlitter, 1987; Crippen and Havel, 
1988; Hadwiger and Fox, 1989). Here we illustrate how 'partial' metrization can be used to effi- 
ciently generate structures with low conformational energy that sample the conformational space 
well. Apart from NP-5 we also use an unconstrained alanine 30mer, in order to be able to 
compare our results with previous work. 

METHODS 

The metric matrix EMBED algorithm (Havel et al., 1983; Crippen and Havel, 1988) has been 
implemented in an expanded new release of the program X-PLOR (BriJnger, 1990) which is avail- 
able upon request from ATB. We refer to the new distance geometry capabilities as X-PLOR/dg. 
Since the theory of distance geometry has been extensively reviewed by Crippen and Havel (1988), 
we concentrate here only on the special features of the new implementation. 

An overview of X-PLOR/dg 
X-PLOR/dg translates covalent geometry from the X-PLOR parameter files into interatom 

distance constraints, and puts them together with the experimentally-derived distance constraints 
into a matrix of upper and lower bounds on the distances between all pairs of atoms in the system. 
These bounds are 'smoothed' by determining the bounds implied by triangle inequalities. The 
program then randomly picks actual distances between the upper and lower bounds and, optio- 
nally, performs 'metrization', that is, it resmooths the remaining distance bounds after each 
distance pick. The distances are then embedded into Cartesian space, followed by regularization 
and minimization. These steps are discussed in greater detail below and are summarized in Fig. I. 

Input data 
X-PLOR/dg translates known bond lengths, bond angles, dihedral angles, planarity restraints, 

and van der Waals radii, together with distance ranges derived from NOE measurements and di- 
hedral angle ranges derived from coupling constant measurements, into upper and lower bounds 
on the distances between the atoms involved using the equations derived by Crippen and Havel 
(1988). The equation relating upper and lower distance bounds between the 1,4 atoms in a dihed- 
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generate input distance bounds 
from the covalent structura and 
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Fig. I. The algorithm used in X-PL(DR/dg to calculate structures via metric matrix d~stance geometry. 

ral angle to the bounds on the angle ~0 derived by Crippen and Havel (1988) assumes that the dis- 
tances among all atom pairs necessary to define the dihedral angle are precisely known. Since, in 
practice, there are only bounds kaown for these distances, reflecting the uncertainty of bond 
lengths and bond angles, X-PLOR/dg thus calculates the maximum and minimum 1,4 distance 
using all permutations of upper and lower bounds on ~0 and on the distances used to define the di- 
hedral angle. 

The covalent geometry is set using X-PLOR's parameter and topology files, rather than an ad- 
ditional library of standard residue coordinates, al~wing use of the standard files for molecular 
dynamics, energy minimization (Brooks et al., 1983) or simulated annealing (Brfinger and 
Karplus, 1991). However, in the course of this work, the bond angles and dihedral angles in the 
standard CHARMM parmallh6 parameter set had to  be slightly modified to ensure geometric 
consistency for planar groups and aromatic rings (for example, the ideal value of the C-C-C angle 
inside the phenylalanine ring was changed from 109.5 to 120°). 

The interproton distance and dihedral angle constraints are entered in using the existing 
X-PLOR facilities developed for NMR structure determination by simulated annealing. Thus, 
only one set of NMR data files needs to be created for both structure determination by distance 
geometry and refinement by simulated annealing. 
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Pseudoatoms 
The bound smoothing involved in metrization can take up a substantial amount of computer 

time. Replacing methyl and methylene groups with single, large, '.pseudoatoms' (Wiithrich et al., 
1983) can reduce the effective number of atoms in the system, thereby reducing the computer time 
needed to embed the structure. Unfortunately, some distance accuracy is lost because it requires 
corrections to be added to the measured NOE distances to artd from these pseudoatoms 
(W/ithrich et al., 1983). In this study, pseudoatoms were not used to replace any groups, allowing 
more realistic packing in the final structures. NOE-derived distance constraints were treated with 
a method similar to that described by Pardi et al. (1988): the upper bounds on constraints to meth- 
yl groups were increased by the radius of the methyl group and reassigned to the methyl carbon. 
The upper bounds on distance constraints to pairs of nonstereospecifically assigned prochiral 
groups were increased by the distance between the two groups in order to be consistent with the 
work done by Pardi et al. (1988). Since NOEs involving aromatic rings could not be assigned to 
specific positions, a correction of 4.8 A was added to all NOEs involving the protons on aromatic 
rings. Although we did not use them in this work, pseudoatoms could in principle be created in 
X-PLOR/dg by using special topology, parameter, and NOE input files. 

Bound-smoothing and the shortest path algorithm 
The input data usually define only a small fraction of the possible interatomic distances in the 

system. However, they imply upper and lower bounds on the distances between atom pairs not 
connected directly by the input data by means of triangle inequalities as shown by Havel et al. 
(1983). These implied bounds can be obtained by finding the shortest path between two points in 
a directed graph, where the directed graph represents all known or previously set distances. There 
are several algorithms which have been used to solve this well-studied computational problem, 
notably those of Dial et al. (1979) and Dijkstra (1959). Tarjan (1983)showed that the Dijkstra al- 
gorithm is theoretically the most efficient known and is quite amenable to parallel and vector- 
processing architectures. The Dijkstra algorithria has a complexity of O(n3). An implementation of 
Dijkstra's algorithm using the relaxed Fibonacci heaps described in Driscoll et al. (1988) would be 
expected to have a complexity of O(n2/log(n)), but ~t is less amenable to vector processing. Havel 
(program DISGEO, Havel and Wiithrich, 1984) suggested that the Dial algorithm (Dial et al., 
1979) is much more efficient for systems with few known distances. However, we were able to 
match the performance of the Dial algorithm by implementing the Dijkstra algorithm on the tree 
of known distances. If the number of known distances is small, as is typically the case for NMR 
structure determinations, X-PLOR restricts execution of the innermost loops of the Dijkstra algo- 
rithm to the sparse tree of known distances. However, if metrization is employed, the number of 
known distances increases rapidly and at some point the overhead involved in restricting the loops 
to the known distances becomes noticeable. In this case, X-PLOR switches automatically to 
simpler loop structures that bypass the known distance tests. In our experience, this 'intelligent' 
implementation of the Dijkstra algorithm performs as well or better than the inplementation of 
the Dial algorithm in DISGEO. 

Briefly, the Dijkstra algorithm finds the shortest path from a single atom (called the root) to all 
other atoms in the following way. A triangular matrix D(atom, atom) is needed to provide the 
distance between two atoms. An array P(atom) is needed to hold an increasingly accurate estimate 
of the length of the shortest path from the root to all other atoms. Finally, a logical array F(atom) 
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is needed to keep track of'finished' atoms, which have had their root-to-selfpathlength accurately 
determined. The value of D for each pair of atoms is initialized to the upper bound on that 
distance, if there is a constraint in the input data, otherwise to infinity. The pathlength P to each 
atom is initialized to infinity, except for the distance from the root to itself, which is obviously 
zero; and, initially, no atoms are 'finished', that is, F is false for all atoms. The following proce- 
dure is then repeated until all atoms are finished: the nonfinished atom with the minimum path- 
length to the root is designated v (therefore, the root atom will always be the first atom to be desig- 
nated v). The pathlength from the root to all other nonfinished atoms w is set to the minimum of 
its current pathlength and D(root,v)+D(v,w). Atom v is then declared finished, and the loop be- 
gins again. When all atoms are finished, P contains the length of the shortest path from the root 
atom to all other atoms. This algorithm has been modified to calculate both upper and lower 
bounds and is implemented in X-PLOR/dg as described in Dress and Havel (1988). 

A limitation of this simple bound smoothing algorithm is that the consistency of the distance 
matri.x is only checked on the level of the triangle inequalities, which provide a necessary but not 
sufficient condition for successful embedding (Havel et al., 1983). Examining larger groups of 
atoms would produce tighter implied bounds, but using groups of four points in the bound 
smoothing process appears to be computationaHy too complex for practical use at the present 
time (Easthope and Havel, 1989; Kuszewski, unpublished). 

Metrization 
In order to 'embed' the structure; i.e., produce Cartesian coordinates from the distance 

constraints, actual distances between the upper and lower bounds must be chosen. This is done by 
assigning a random distance between the upper and lower bound on a given distance using one of 
several possible random distributions. Taking Havel's (1990) experiences into account, a uniform 
random number distribution has been chosen for our studies. 

The bounds produced by the initial smoothing encompass all conformations which are con- 
sistent with the input data. A number of the distance geometry programs, such as older versions 
of DSPACE, pick the interatom distances independently of each other between the specified 
bounds. The resulting distancesdo therefore in general violate most triangle inequalities, and are 
even less likely to be consistent witti a three-dimensional conformation. The embedding proce- 
dure, in best-fitting the coordinates to the distances, ends up producing distorted structures and 
exhibits very poor conformational sampling (see Results). The quality of the structures produced, 
as well as their conformational sampling, is expected to be improved by making the chosen distan- 
ces more self-consistent. 

A procedure, termed metrization, to ensure this self-consistency on the level of the triangle in- 
equality has been developed (Havel and Wfithrich, 1984) and is available as an option in the 
program DISGEO. In it, a distance is chosen between the upper and lower bounds between two 
pairs of atoms. The bounds for this atom pair are set to the chosen value and the bounds matrix 
is resmoothed using the shortest path algorithm (see previous section) with this new information. 
The procedure is repeated for each atom pair, guaranteeing that each newly-chosen distance is 
consistent with the choices that have already been made. Thus, no overall initial bound-smooth- 
ing is required, since it is performed in the process of metrization (see Fig. !). 

If the distances from one atom to all the others are chosen one after another, successive calls to 
the bound-smoothing procedure can use the previous iteration's result as a very good starting 



39 

Fig. 2. The order in which interatomic distances are set during various complete mettization protocols. The darkness of 
a square indicates the point at which that interatomic distance is set (starting from black and going to white). The internal 
atom numbers run from the N-terminus to the C-terminus. Distances from each atom to itself are shown for clarity. Note 
that when the distance between atoms x and y is set, the y-to-x distance is also set. although this is not shown here for the 
sake of clarity. (a) Ordered metrization. The root atoms are chosen in order, and the distances from each root atom to the 
other atoms are also chosen in order. (b)-Random metrization. The root atoms are chosen at random, but the distances 
from each root atom to the other atoms are chosen in order. (c) Combined metrization. In this case, the first two root 
atoms are chosen in order, and the remaining root atoms are chosen at random. Once again, the distances from each root 
atom to all other atoms are chosen in order. (d) An example of complete random metrization designed to forestall determi- 
nation (and thereby increase the 'randomness' of the embedded structure) by avoiding the completion of columns or rows 
of the matrix for as long as possible. The root atom is changed after each distance is set. 

point ,  a l lowing the r e smoo th ing  to be done  very quickly.  Only when the root  a t o m  changes does 

the b o u n d - s m o o t h i n g  p rocedure  take a significant a m o u n t  o f  c o m p u t e r  time. Both the present 

dis tance geomet ry  package  and the D I S G E O  p rog ram  use this trick to reduce the b o u n d - s m o o t h -  

ing t ime dur ing  metr iza t ion .  

As shown in the results, the o rder  in which these root  a toms  are chosen has a great  influence on 

the final c o n f o r m a t i o n  produced .  The  original  imp lemen ta t ion  in D I S G E O  picks its root  a toms  

beginning at one  te rminus  and work ing  across to the o ther  (Fig. 2a), result ing in a skewed distri- 

bu t ion  o f  s t ructures  as was shown by Havel  (1990). R a n d o m i z i n g  the order  in which the root  

a toms  are picked (Fig. 2b) results in bet ter  c o n f o r m a t i o n a l  sampl ing  (Havel ,  1990). The  imple- 

men ta t ion  in X - P L O R / d g  can use ordered  met r iza t ion  or  r andom metr izat ion.  
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Partial metrization 
We propose here a novel metrization protocol to reduce the computer time while maintaining 

the good sampling properties of random metrization. Schlitter (1987) showed that the complete 
set of all interatom distances in the metric matrix is highly redundant. Knowing the distances 
from four atoms to all other atoms in the molecule is, at least in principle, sufficient to constrain 
the molecule into one three-dimensional conformation or its mirror image. That is, knowing the 
distances from four atoms to all others is equivalent to knowing the distances from all atoms to 
all others. Therefore, if the distances from four root atoms to all the others are set and the bounds 
matrices are resmoothed after all these choices, then the gap between the upper and lower bounds 
on all remaining interatom distances should be zero. In practice, this performance is not achieved, 
since consistency at the triangle inequality level is a necessary, but not sufficient, condition for 
three-dimensional embeddability (Havel et al., 1983). In the new protocol proposed here, which 
we refer to as 'partial metrization', the bounds matrices are resmoothed while choosing the dis- 
tances • from only a few root atoms, after which distances are chosen between their upper and 
lower bounds without resmoothing. Partial metrization protocols are described by the percentage 
of root atoms with bound-smoothing after each distance pick (e.g., '10% metrization' indicates 
that the bounds are resmoothed while setting the distances from 10% of the root atoms to all 
others, after which the remaining distance bounds are smoothed and distances are chosen between 
their upper and lower bounds without intervening resmoothing of the bounds). 'Four-atom metri- 
zation' is a special case of partial metrization in which the bounds are resmoothed only while pick- 
ing the distances from four (selected) atoms to all others. 

Embedding 
The matrix of chosen interatomic distances is then converted to a metric matrix M where the 

metiic matrix element M/j is defined as 

M 0. =½(D(i, 0) 2 + O(j, 0) 2 - O(i,j) 2 ) (1) 

where D(i,O) denotes the distance from atom i to the collective centroid of all atoms, and D(i,j) 
the distance from atom i to atomj (Crippen and Havel, 1988). If the three largest eigenvalues of 
this matrix are all positive, then their Corresponding eigenvectors give the Cartesian coordinates 
directly. If the three largest eigenvalues are not positive, then this set of trial distances cannot be 
embedded and new distances must be chosen. In the course of this work, the three largest eigen- 
values have always been positive (data not shown). 

Partial Embedding 
Even using partial metrization, the computer time needed to embed relatively large structures 

can be considerable. Therefore, we have also implemented a partial embedding protocol within X- 
PLOR/dg. By performing initial bound smoothing on all atoms in the system but (partial) metriza- 
tion and embedding on only a subset of them, the effective size of the embedding problem can be 
reduced considerably. Because the entire distance matrix is smoothed first, the distances chosen 
during metrization are guaranteed to be consistent with all the input information. The missing 
atoms are placed randomly around the embedded atoms after embedding but before regulariza- 
tion (Nilges et al., 1988). The effect of this protocol on the final structures' conformational 
sampling is discussed below. 
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Stage I: 200 steps conjugate gradient minimization 
• Bond term except disulphides (kbond = 1000 kcal/mol/~.z) 
oNOE term (kNoE = 100 kcal/mol ]k 2 if the interatom distance is outside the range d -dm~n~- d + dpj~i, 0 otherwise) 
• Repulsive nonbonded term except for atoms that are bonded to each other with van der Waals radii multiplied by 0.9 
and kvdw set to 4 kcal/mol ~z 

Stage 2:200 steps conjugate gradient minimization 
• Bond angles term added (k~n~je = 500 kcal/mol rad2), except for disulfides 

Stage 3:200 steps conjugate gradient minimization 
• Improper dihedral term for chiral and planar groups added (kimpr = 500 kcal/mol rad 2) 
ekanst~ is reduced to 100 kcal/mol rad 2 
• Only van der Waals interactions between atoms which are not bonded or share a common bonded atom to each other 
are included (radii are now standard size and k,.dW is decreased to 0.001 kcal/mol ,~2) 

Stage 4:300 steps conjugate gradient minimization 
• ka,slc is increased to 500 kcal/mol rad 2 

Stage 5:1000 steps conjugate gradient minimization 
• Disulphide bond terms added (k~.bond = 100 kcal/mol/~2) 
• van der Waals standard radii are multiplied by 0.7 and kvdw is increased to 2 kcal/mol ~2 

Stage 6:I000 steps conjugate gradient minimization 
• kvdw is increased to 4 kcal/mol ,~2 

Stage 7:I000 steps conjugate gradient minimization 
• van der Waals standard radii are multiplied by 0.8 

Each step includes all the energy terms included in previous steps unless otherwise noted. 

Scaling 
The  c o m p u t a t i o n  o f  the metr ic  ma t r i x  a l lows the expected rad ius  o f  gy ra t ion  to be ca lcu la ted  

before  embedd ing .  This  is useful as the e m b e d d e d  s t ruc tures '  radi i  o f  gy ra t ion  are  of ten 10-20% 

smal le r  t han  the expected  value  (da t a  not  shown) ,  p r e s u m a b l y  because  o f  r ema in ing  inconsis ten-  

cies with h ighe r -o rde r  inequali t ies•  Therefore ,  fo l lowing a sugges t ion  by T. Have l  (persona l  com-  

munica t ion) ,  we scale the e m b e d d e d  coo rd ina t e s  by the ra t io  o f  the expec ted - to -ac tua l  radi i  o f  gy- 

ra t ion .  The  scal ing was expected  to m a k e  subsequen t  energy min imiza t ion  be t te r  behaved .  As  

shown in the Resul ts  sec t ion this turned  ou t  to be unnecessary•  

Regularization and refinement 
The  e m b e d d e d  th ree -d imens iona l  s t ruc tures  have  very p o o r  geomet ry  requi r ing  extensive regu- 

la r iza t ion .  Special  p r ecau t ions  have to be taken  to avo id  numer ica l  instabi l i t ies  dur ing  the regu- 

l a r i za t ion  process• W e  have deve loped  a mul t i - s tage  min imiza t ion  p r o t o c o l  with a var iab le  ta rge t  

func t ion  to regular ize  the s t ruc ture  (Table  1). In o rde r  to keep the final s t ruc tures  close to the em- 

bedded  s t ruc ture ,  the energies  o f  the d i s tance  geome t ry  s t ructures  were min imized  using the 
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TABLE 2 
SIMULATED ANNEALING PROTOCOL DEVELOPED BY NILGES ET AL. (1988)" 

Stage I: simulated annealing at 1000 K, 50 cycles of 75 fs molecular dynamics 
*k~.d = I000 kcal/mol ,~2 
*k~E = I00 kcal/mol ~2 if the interatom distance is outside the range d--droin,s - -  d + dplus, 0 otherwise 
*k.ngt~ = 500 kcal/mol rad 2 
"ki,.pr = 500 kcal/mo] rad 2 
*time step I fs 
.van der Waals radii are at standard values 
.van der Waals interactions are calculated only between atoms that are not bonded to each other or are bonded to a 
common third atom 

*kvdw starts at 0.001 kcal/mo1,8,2 and is scaled each cycle by a factor of I. 125, ending at 0.25 kcal/mol ,~2 
#T~lh = 1000 K 

Stage 2: slow cooling to 300 K, 28 cycles of 50 fs molecular dynamics 
.time step I fs 
.van der Waals radii are scaled by 0.8 
*kvaw set to 2.0 kcal/mol ,~2 
.T~t h starts at 1000 K and is reduced each cycle by 25 K, end.ing at 300 K 

Stage 3: energy minimization 
.800 steps conjugate gradient minimization 

"Each step includes all energy terms included in the previous step unless otherwise noted. 

m e t h o d  by Powell  (1977) imp lemen ted  in X - P L O R .  It should  be no ted  tha t  the min imiz a t i on  steps 

could  be replaced  by shor t  mo lecu l a r  d y n a m i c s  runs  in o r d e r  to increase  the rad ius  o f  conver -  

gence. The  p r o t o c o l  uses a geomet r i c  force field (Nilges  et al., 1988; Br/.inger, 1991) and  the inde-  

penden t  ad ju s tmen t s  o f  ind iv idua l  energy terms is close in spir i t  to the s imula ted  annea l ing  p ro -  

tocol  deve loped  by Nilges  et al. (1988). Since d i s tance  space c a n n o t  con ta in  ch i ra l i ty  i n fo rma t ion ,  

this p ro toco l  has  to be repea ted  for  bo th  m i r r o r  images  o f  the e m b e d d e d  th ree -d imens iona l  

s t ruc ture  and  the final s t ruc ture  i s  chosen  to be the one with the the lower  min imized  energy.  It 

should  be no ted  tha t  in a wel l -def ined case, this ene rgy-based  chi ra l i ty  test could  be replaced  by 

an  r .m.s,  difference test to a reference s t ruc ture  with correc t  chi ra l i ty .  The  regular ized  s t ruc tures  

m a y  require  fur ther  ref inement  by s imula ted  annea l ing .  The. p ro toco l  used for  ref inement  o f  the 

NP-5  d i s tance  geome t ry  s t ruc tures  is de ta i led  in Tab le  2. 

R E S U L T S  A N D  D I S C U S S I O N  

Conformational sampling of unconstrained alanine 30mers 
The effect o f  var ious  me t r i za t ion  p ro toco l s  on their  s t ruc tures '  c o n f o r m a t i o n a l  s ampl ing  was 

inves t iga ted  using uncons t r a ined  L-alanine 30mers.  Dis tance  geome t ry  s t ruc tures  o f  the  L-alanine 

30mers were c rea ted  using o rde red  me t r i za t ion ,  r a n d o m  met r i za t ion ,  and  no met r i za t ion .  In ad-  

d i t ion ,  two sets o f  subs t ruc tu res  were c rea ted  by pe r fo rming  b o u n d  s m o o t h i n g  on the comple t e  

mat r ix ,  and  me t r i za t ion  and  e m b e d d i n g  only  for  a subset  o f  a toms .  The  first subs t ruc tu re  con-  

sisted o f  the C, N,  C a and  C 13 a toms ,  the second on ly  o f  the C ~ a toms.  The  miss ing a t o m s  were 

s imply  a d d e d  for  each res idue in r a n d o m  pos i t ions  a r o u n d  the C ~ a toms.  In each case, 100 s t ruc-  
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Fig. 3. Typical alanine 30mer structures embedded with various distance geometry protocols before energy minimization. 
(a) No metrization. (b) Complete ordered metrization. (c) Complete random metrization. 
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TABLE 3 
COMPARISON OF UNCONSTRAINED POLYPEPTIDE BACKBONE RMSDs REPORTED 1N METZLER ET 
AL (1989), HAVEL (1990), AND THE PRESENT STUDY 

Metzler et al. Havel Havel Present study 
(Lys-Glu) 12mer Ala 20mer Ala 40mer Ala 30mer 

No metrization 
No minimization 9.55 4.0 - 14.15 

No metrization 
With minimization 3.24 3.38 4.18 4.36 

Ordered metrization 
With minimization 5.43 8.62 8.30 

Random metrization 
With minimization - 7.89 - 13.29 

Random metrization 
With minimization 
C, N, C °, CP embedded 

Random metrization 
With minimization 
C" embedded 

Simulated annealing 5.43 

12.16 

9.2 

10.84 

Note that Havel's values have been denormalized and take only C ° positions into account. The values given for Havel's 
random ~/¥ assignment are from his data set DM-I. 

tures were generated using different initial random number seeds for the distance assignments pri- 

or to embedding and, in the case of  the random metrization structures, for the selection of  root 

atoms as well. The distance data used by the distance geometry algorithm comprised the geometry 

(bond length, angles, planarity, and van der Waals repulsion ) of  the polypeptide chain with the 

peptide bonds in the t rans  conformation. All these structures were regularized as described in 

Table 1. The SA structures were annealed and minimized as described in Table 2. To compare the 

sampling properties of  distance geometry and simut)ated annealing, another set of  100 L-alanine 

30mer structures was created by an SA protocol developed by Nilges et al. (1991) starting from an 

extended strand. Different choices of  the initial random number seed resulted in different initial 
velocities, which produced a large variation of  the SA structures. 

Figure 3 shows typical embedded distance geometry alanine 30mer structures before minimiza- 

tion. Without metrization (Fig. 3a), our structures are very distorted and appear to be similar to 

those published in Metzler et al. (1989). Ordered metrization starting from the N-terminus (Fig. 

3b) creates embedded structures that are too compact at the N-terminus and too elongated at the 

C-terminus. Embedded structures produced by random metrization (Fig. 3c) do not have that 

problem, as was suggested by Havel (1990). The conformational sampling properties of  the dis- 
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Fig. 4. End-to-end distances of structures produced with various protocols• The end-to-end distance of each structure is 
shown by a dot. Bars show the mean and standard deviation of the end-to-end distances produced by each protocol. (I) 
no metrization +conjugate gradient minimization. (2) random 100% metrization +conjugate gradient minimization. (3) 
random 100% metrization of a substructure (C, N, C ° and C~ atoms)+conjugate gradient minimization..(4) random 100% 
metrization of a substructure (C u atoms)+conjugate gradient minimization. (5) ordered 100% metrization+conjugate 
gradient minimization. (6) simulated annealing using the protocol developed by Nilges et al. (1991)• For (3) and (4), the 
missing atoms were added in ramdom positions before minimization. Note that the end-to-end distance for a fully-ex- 
tended alanine 30mer (i.e., ~b = - 139 °, ¥ = 135 ° for all residues) is 100.3 ,~.. 

tance geometry and SA protocols are shown in Table 3 and in Figs. 4 and 5. Table 3 shows the 
mean backbone RMSD; Fig. 4 gives the distribution of the end-to-end distances; and Fig. 5 shows 
Ramachandran plots for the simulated annealing and the three different metrization protocols. 

The structures embedded without metrization have poor sampling in Cartesian space, as shown 
by their small backbone RMSDs (Table 3) and tight distribution of end-to-end distances (Fig. 4), 
and in cp/~ space, as shown by their heavy overpopulation of backbone conformations near the 
center of the Ramachandran plot (Fig. 5c). 

The ordered metrization structures tend to be too compact at their N-termini, presumably 
because the N-terminal region contains the initial root atoms for ordered metrization. This is 
carried through to the minimized structures, as shown by their short end-to-end distances (Fig. 4). 
This also explains their small backbone RMSDs after minimization (Table 3), even though their 
sampling in tp/~g space, judging from their Ramachandran plots (Fig. 5b), is very broad. 

Random metrization produces a wide range of structures, as shown by their end-to-end 
distances (Fig. 4). The presence of a relatively large number of greatly extended structures helps 
to explain the slight overpopulation of points near the extended limits of the Ramachandran plot 
(Fig. 5a) and their very large backbone RMSDs (Table 3). Partial embedding of substructures af- 
ter random metrization reduces the conformational sampling (Table 3 and Fig. 4). This effect is 
most pronounced for the substructures that consist only of the C a atoms. However, even in this 
case the sampling is better than for ordered metrization. 

Simulated annealing starting from an extended strand (¢p=-  139°,~= 135 °) produces struc- 
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Fig. 5. Ramachandran plots for structures created with various protocols. 100 alanine 30mer conformations were calculat- 
ed with each of the protocols described below and their Rarnachandran plots superimposed. (a) Random 100% metriza- 
tion +conjugate gradient minimization. (b) Ordered 100% metriz~ion +conjugate gradient minimization. (c) No metriza- 
tion + conjugate gradient minimization. (d) Simulated annealing using the protocol from Nilges et al. ( 1991 ) 

tures whose average end- to-end distance is about  the same as in the case o f  r a n d o m  metrization,  

but it does not  p roduce  the extremely extended or  compac t  structures that  r a n d o m  metr izat ion 

can (Fig. 4). The R a m a c h a n d r a n  plot (Fig. 5d) shows fewer structures existing in the regions with 

positive q) than those for the distance geometry  calculations. The allowed regions are more  uni- 
formly sampled than in any o f  the other  R a m a c h a n d r a n  plots. 

A compar i son  o f  these results and those reported in Metzler et al. (1989) and Havel (1990) is 

given in Table 3. Note  that the very large backbone  R M S D s  a m o n g  nonminimized  structures 



TABLE 4 
NP-5 STRUCTURES CALCULATED WITH DISTANCE GEOMETRY 
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(a) Percentage of successful NP-5 structures among 200 distance geometry calculations. Successful is defined as no NOE 
violations being greater than 0.5 ,~ and the deviations of bond lengths and bond angles from ideality being less than 
0.015 ,~ and 3,  respectively (using the parameters defined in Table 1). 

Minimization only + Simulated annealing 

No metrization 5% 76% 
Ordered 100% metrization 16% 54% 
Random 100% metrization 24% 56% 

(b) Percentage of the successful NP-5 structures that are within 4 ,~ of the standard fold or the best pseudo-mirror-image 
fold MC-6 described in Levy et al. (1989). All successful NP-5 structures that are more than 4 ~, away from either fold are 
grouped together under 'other'. 

Minimization only + Simulated annealing 

Standard Pseudo-mirror-image Other Standard Pseudo-mirror-image Other 

No metrization 100% 0% 0% 95% 2% 3% 
Ordered 100% metrization 48% 10% 42% 66% 5% 29% 
Random 100% metrization 60% 10% 30% 68% 12% 21% 

wi thou t  me t r i za t ion  found  by Metz le r  et al. (1989) are conf i rmed  here and,  in par t icu la r ,  the small  

C" R M S D  for nonmin imized  s t ruc tures  r epor ted  by Havel  (1990) remains  an unexpla ined  

cur ios i ty .  

To  test the effect o f  scal ing the s t ruc tures  (see M e t h o d s  section),  100 a lan ine  30mers were em- 

bedded  with comple t e  o rde red  me t r i za t ion  and a n o t h e r  100 s t ructures  with comple te  r a n d o m  me- 

t r iza t ion.  The  s t ruc tures  were not  scaled and  were subsequen t ly  min imized  using the same p ro to -  

col as the scaled e m b e d d e d  s t ructures .  The i r  b a c k b o n e  R M S D s ,  R a m a c h a n d r a n  plots ,  and  

d i s t r ibu t ion  o f  their  end - to -end  d is tances  were not  s ignif icant ly different  from those with scal ing 

(da ta  not  shown).  

Col!formational samplhTg of NP-5 
In o rde r  to examine  the s ampl ing  p roper t i e s  o f  d i s tance  geomet ry  in so lu t ion  N M R  st ructure  

de t e rmina t ion ,  s t ruc tures  o f  NP-5  were ca lcu la ted  using the N O E  dis tance  cons t ra in t s  f rom Pardi  

et al. (1988). The  93 N O E s  from set A o f  Pard i  et al. ,  on ly  43 o f  which are  nonsequent ia l ,  were 

used, a long  with ac tua l  d i su lph ide  bonds  between residues 3 and  31, 5 and  20, and  10 and 30. 200 

NP-5  s t ruc tures  were e m b e d d e d  using comple t e  o rde red  met r i za t ion  and  200 s t ructures  with 

comple t e  r a n d o m  met r iza t ion .  A n o t h e r  200 s t ructures  were e m b e d d e d  wi thou t  met r iza t ion .  These 

were min imized  as descr ibed  in Tab le  1 and subjec ted  to a shor t  SA p ro toco l  as descr ibed  in Table  

2. 

The  success rates  o f  several  p ro toco l s  are  summar i zed  in Tab le  4a. The  success rate  o f  a struc- 

t u r e -de t e rmina t i on  p ro toco l  is defined here as the n u m b e r  o f  s t ructures  in each set with no N O E -  
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Fig. 6. NP-5 structures produced by distance geometry. The structures sh6wn are among those successfully embedded (as 
defined in Table 4a) and they keep their fold virtually unaltered throughout the simulated annealing refinement. (a) The 
standard fold of NP-5 produced with complete random metrization and conjugate gradient minimization. (b) The pseudo- 
mirror-image fold of NP-5 produced with 6omplete random metrization and conjugate gradient minimization. (c) A new 
NP-5 fold similar to the standard fold but with the 1-20 loop rotated up and the C-terminus caught behind the 1-20 loop. 
Produced with complete ordered metrization and conjugate gradient minimization. (d) A new NP-5 fold similar to the 
pseudo-mirror-image fold but with the 1-20 loop rotated up and away from the viewer. Produced with complete random 
metrization and conjugate gradient minimization. (e) A new NP-5 fold similar to the pseudo-mirror-image fold but with 
the 1-20 loop curved around toward the termini before entering the I~ sheet. Produced with complete random metrization 
and conjugate gradient minimization. 

der ived  d i s tance  cons t r a in t  v io la t ion  grea te r  than  0.5 ,~, and  low dev ia t ions  o f  the geomet ry  f rom 

ideal i ty  (as defined in Tab le  1). N o t e  tha t  s imula ted  annea l ing  ref inement  o f  the minimized  struc-  

tures can  doub le  the  success rate  o f  con juga te  g rad ien t  min imiza t ion  alone.  

The  fami ly  o f  successful  d i s tance  geome t ry  s t ruc tures  falls into several  clusters  (Table  4b), 

where  a c luster  is defined as a col lec t ion  o f  s t ructures  with an r.m.s, difference o f  b a c k b o n e  a t o m s  

o f  no m o r e  than  4.0 ,~, f rom the mean.  The  largest  c luster  (Fig.  6a) c o r r e s p o n d s  to the s t a n d a r d  

NP-5  fold first r epo r t ed  by Pard i  et al. (1988). The  second largest  c luster  (Fig.  6b) co r r e sponds  to 

the best  p s e u d o - m i r r o r - i m a g e  c o n f o r m a t i o n  descr ibed  by Levy et al. (1989). However ,  we ob-  

served a n u m b e r  o f  s t ruc tures  tha t  fall into ne i ther  c o n f o r m a t i o n a l  cluster.  These  add i t i ona l  s truc-  
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Fig. 7. Average gap left between upper and lower bounds on interatomic distances left unset after partial metrization vs. 
percentage of root atoms used for metrization. The thick line shows ordered metrization; the thin line shows random 
metrization. 

tures exhibit low conformational energies and good agreement with the NOE distance con- 
straints. For  instance, Fig. 6c shows a variation on the standard fold in which the bulk of  the N- 
terminal region is rotated by 90 ° relative to the 13-sheet, and the C-terminus is caught behind the 
N-terminal loop. Figures 6d and e show similar variations on the pseudo-mirror-image structure, 
with the N-terminal region rotated in different ways relative to the rest of  the structure. 

Partial metrization and the quality of the embedded structures 
In order to examine the effect of  different metrization percentages on the quality of  the struc- 

tures obtained, NP-5 structures were calculated with partial metrization increasing from no atoms 
to all 472, one at a time. This processwas repeated for both ordered and random metrization 
using the same set of  random numbers for distance assignments. As shown in Fig. 7, the average 
gap between the upper and lower bounds on the nonmetrized.distances drops extremely quickly 
while performing metrization on the first few atoms. It might be possible to lower the remaining 
gap even more quickly with judicious choices ofear ly  root atoms. The NOE template analysis pre- 
sented by Hempel and Brown (1989) can identify well-defined domains of  a protein from the 
NOESY data. Choosing early root atoms to be in different domains may help ensure that the 
maximum amount  of information is imparted with minimal metrization. 

In ordered metrization, the sets of  distances from any of  the first four root  atoms to most of the 
Others are very similar (since they are coming from four nearby atoms), and thus setting the dis- 
tances relating to these first four atoms does not contribute much more information than setting 
the distances from one atom to all the others (considering the uncertainties in the distances). In 
random metrization, the four root atoms are scattered throughout  the molecule, so the early 
distance choices contribute more information to determine the structure, explaining random me- 
trization's ability to lower the gap more quickly. 
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Fig. 8. Conformational energies of embedded structures vs. percentage of root atoms used for metrization. The thick lines 
show increasing ordered metrization; the thin lines show increasing random metrization. (a) Total energy (consisting of 
bond, bond angle, planarity, chirality, repulsion, and NOE energy terms). (b) Bond energy. (c) Angle energy. (d} Chiral 
energy. (e) NOE energy. (f) Repulsion energy. 
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Fig. 9. Effect of increased metrization on conformational sampling of unconstrained alanine 30mers. (a) Backbone RMSD 
of embedded and minimized structures for increasing ordered metrization. Bars show the standard deviation of the back- 
bone RMSD for each set of structures. (b) Backbone RMSD of embedded and minimized structures for increasing 
random metrization. Bars show the standard deviation of the backbone RMSD for each set of structures• (c) End-to-end 
distances ofembedded and minimized structures for increasing ordered metrization. Bars show the mean and standard de- 
viation of the end-to-end distances of the structures in each group. (d) End-to-end distances of embedded and minimized 
structures for increasing random metrization. Bars show the mean and standard deviation of the end-to-end distances of 
the structures in each group• 
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As shown in Fig. 8, the conformational energies of structures before minimization drop quickly 
after performing metrization on the first few root atoms. Increasing the number of atoms involved 
in random metrization lowers the conformational energies much more quickly than in ordered 
metrization (Fig. 8). Note that the chiral energy (Fig. 8d) does not change significantly with in- 
creasing ordered or random metrization, since chirality information cannot be represented in 
distance space. 

Partial metrization and the sampling of the embedded structures 
The effect of increasing the number of atoms involved in partial metrization on the conforma- 

tional sampling of the structures produced was examined by calculating 100 structures at four- 
atom partial metrization and at 5 %, 10 %, 20 %, 40 %, 60 % and 80 % partial metrization for both 
ordered as well as random root atom sequence. As is shown in Fig. 9, increasing metrization 
beyond the first four root atoms has little effect on the conformational sampling after minimiza- 
tion, either for ordered or for random metrization. No significant differences were found in the 
Ramachandran plots (not shown) of these ensembles of structures with different degrees of metri- 
zation. 

In order to test more stringently the influence of the first four root atoms used in metrization on 
the conformational sampling, 100 alanine 30mers were calculated with ordered metrization for 
the first four atoms and random metrization thereafter. Another 100 structures wore calculated 
with random metrization for the first four atoms and ordered metrization for the rest. As shown 
in Fig. 10, the positions of the first four root atoms virtually determine the distribution of the end- 
to-end distances, i.e., ordered metrization for the first four points produces the same end-to-end 
distances as complete ordered metrization, and random metrization for the first four points pro- 
duces the same end-to-end distances as complete random metrization. The average backbone 
RMSD and Ramachandran plots for the structures calculated with combined metrization were 
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Fig. 10. Effect of combined metrization on conformational sampling of alanine 30mers. The end-to-end distance of each 
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also not significantly different from those for structures calculated with the full metrization pro- 
tocol that uses the same type of metrization as the one in the first stage of combined metrization 
(data not shown). 

From Figs. 9 and 10 it is clear that the embedded structure's conformation is nearly completely 
determined after the distances from four atoms to all the others have been set. It might be possible 
to improve distance geometry's sampling even further by choosing interatomic distances in 
complete random order (Fig. 2d) that avoids setting the distances from four points to all the 
others for as long as possible. However, this would eliminate the performance gains made by 
starting most calls to the shortest-path routine with the same root as the previous call. 

Effect of problem s&e on CPU time 
In order to quantify the actual performance of X-PLOR/dg, alanine polymers with sizes vary- 

ing from 100 to 1000 atoms were embedded after various metrization protocols. The actual CPU 
times for the metrizations and embeddings on a Convex 210 are shown in Fig. 11. To give a rough 
comparison of these protocols' performance to that of simulated annealing, the same alanine 
polymers were subjected to a simulated annealing protocol similar to that described in Nilges et 
al. (1991), starting from random backbone torsion angles. For the comparison between the CPU 
times it should be taken into account that the reported CPU times for the distance geometry cal- 
culations are for metrization/bound-smoothing and embedding only, i.e., without regularization 
and refinement. The CPU time for the minimization protocol described in Table 1 is also shown 
in the figure. An annealing refinement such as the one described in Nilges et al. (1988) takes about 
twice the CPU time of the minimization scheme. The CPU time for de novo simulated annealing 
an'd minimization has a nearly.linear behavior while the CPU time for distance geometry exhibits 
a progressive increase when the number of atoms is increased. The large difference between the 
times for no metrization and partial metrization is due to the fact that the complexity of the bound 
smoothing algorithm is dependent on the number of known distances in the molecule. It rises 
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steeply with the number  of  experimental distance bounds, and also with the number  of  distances 
set during the metrization. The plot indica, tes that in order to use distance geometry efficiently for 
larger systems one has to avoid embedding all the atoms, and work with substructures. The re- 

maining atomic positions can be generated and refined as described previously (Nilges et al., 
1988). 

C O N C L U D I N G  R E M A R K S  

Performing partial random metrization during the construction of a trial distance matrix before 
embedding into three-dimensional space has two effects. First, the conformational  energies of  em- 

bedded structures are significantly better than those produced without metrization. Second, the 
sampling of the conformational  space is drastically improved, especially through randomization 
of  the root a tom order. In fact, the structures calculated by the partial random metrization pro- 

tocol are as different from each other as those produced by molecular dynamics-based simulated 
annealing. This appears  to apply to unconstrained polypeptides as well as to proteins constrained 

by N M R  interproton distance information. While computat ionally the partial random metriza- 

tion approach is not as efficient as inferior nonmetrizat ion approaches, the excellent sampling 
properties make it a useful tool not only for N M R  structure determination, but also for model 
building purposes. It should be noted however, that the CPU (Fig. 1 1) and memory requirements 

of  distance geometry inherently limit the application of  this method to small-to-medium-size mo- 
lecules up to a few thousand atoms on present computer  architectures. 
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